Evaluation of Collagen Membranes Coated with Testosterone and Alendronate to Improve Guided Bone Regeneration in Mandibular Bone Defects in Minipigs

Bart A. J. A. van Oirschot¹, John A. Jansen¹, Cindy J. J. M. van de Ven¹², Edwin J. W. Geven¹², Jan A. Gossen¹²

¹Department of Dentistry - Biomaterials, Radboudumc, Radboud University Nijmegen, Nijmegen, The Netherlands.
²Osteo-Pharma BV, Oss, The Netherlands.

Corresponding Author:
Bart A. J van Oirschot
Department of Dentistry - Biomaterials
Radboud University Nijmegen
Dentistry 309, Radboudumc, Ph v Leijdenln 25
6525 EX NIJMEGEN
The Netherlands
Phone: +31 24 361 4027
E-mail: bart.vanoirschot@radboudumc.nl

ABSTRACT

Objectives: The purpose of the present in vivo study was to evaluate whether pericard collagen membranes coated with ancillary amounts of testosterone and alendronate in a poly-lactic glycolic acid (PLGA) carrier as compared to uncoated membranes will improve early bone regeneration.

Material and Methods: In each of 16 minipigs, four standardized mandibular intraosseous defects were made bilaterally. The defects were filled with Bio-Oss® granules and covered with a non-coated or coated membrane. Membranes were spray-coated with 4 layers of PLGA containing testosterone and alendronate resulting in 20, 50 or 125 μg/cm² of testosterone and 20 μg/cm² alendronate (F20, F50, F125). Non-coated membranes served as controls (F0). Animals were sacrificed at 6 and 12 weeks after treatment. Qualitative and quantitative histological evaluations of bone regeneration were performed. Differences between groups were assessed by paired Student’s t-test.

Results: Light microscopical analysis showed new bone formation that was in close contact with the Bio-Oss® surface without an intervening non-mineralized tissue layer. Histomorphometric analysis of newly formed bone showed a significant 20% increase in area in the F125 coated membrane treated defects (40 [SD 10]% ) compared to the F0 treated defects after 6 weeks (33 [SD 10]% , P = 0.013). At week 12, the total percentage of new bone was increased compared to week 6, but no increase in newly formed bone compared to F0 was observed.

Conclusions: The data from this in vivo study indicate that F125 collagen membranes coated with testosterone and alendronate resulted in superior bone formation (+24%) when normalized to control sites using uncoated membranes.

Keywords: bone regeneration; bone substitutes; mandible; surgery; membranes; minipig.

Accepted for publication: 27 September 2020
To cite this article:
van Oirschot BA, Jansen JA, van de Ven CJ, Geven EJW, Gossen JA.
Evaluation of Collagen Membranes Coated with Testosterone and Alendronate to Improve Guided Bone Regeneration in Mandibular Bone Defects in Minipigs